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ABSTRACT

The internal physical mechanism that governs the current

conduction in junction-gate field-effect transistors is studied.

A numerical method of analyzing the devices with different

length-to-width ratios and doping profiles is developed. This

method takes into account the two-dimensional character of the

electric field and the field-dependent mobility. Application

of the method to various device models shows that the channel

width and the carrier concentration in the conductive channel

-decrease with the increasing drain-to-source voltage for conventional

devices. It also shows larger differential drain conductances for

shorter devices when the drift velocity is not saturated. The

interaction of the source and the drain gives the carrier accumu-

lation in the channel which leads to the space-charge-limited

current flow. The important parameters for the space-charge-

limited current flow are found to be the L/LDE ratio and theDE

crossover voltage. Triode-like characteristics have been ob-

tained for a device model with a small L/LDE ratio and a small

crossover voltage. In conclusion the theory presented in this

dissertation explains the important features of the experimentally

observed steady-state drain characteristics by clarifying the

contribution of the various physical mechanisms to the current

conduction. 
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Chapter I: INTRODUCTION

A junction-gate field-effect transistor (JFET) is an active

semiconductor junction device. The cross-sectional view of a

JFET with N-channel is shown in Fig. 1.1. The two gate terminals

in the figure are usually tied together. The drain current which

flows parallel to the metallurgical gate junction is controlled

mainly by the transverse electric field by means of the reverse

biased gate P-N junction. Unlike the bipolar transistor which

operates by the injection of minority carriers, the JFET is a uni-

polar transistor; the current is carried by the majority carriers.

When compared to the bipolar transistors, the JFET has lower noise,

smaller temperature dependence, stronger resistance to the radiation

damage and higher DC input impedance.

The operation of the JFET was first analyzed by W. Shockley

for symmetric devices with heavily doped gate regions and with

large length-to-width ratios, i.e.,

L/a > 3

where L is the length and 2a is the width of the active region of

the device. The analysis is based on the 'Gradual-Channel Approxi-

mation' which assumes the total depletion of the free carriers in

the space-charge region and the neutrality of the conducting channel.

It is further assumed that the transition between the two regions

is abrupt. An important parameter of the gradual-channel approxi-

mation is the pinch-off voltage, V which is the potential drop
P
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across a space-charge region of width 'a' of a one-dimensional P-N

junction similar to the gate P-N junction of the device. When

the source and the drain terminals are shorted, the application

of V to the gate depletes all the carriers from the channel.
P

As was recognized by Shockley, the gradual-channel approximation

is valid only for a device with a large length-to-width ratio and

for the drain-to-gate voltage (Vdg) less than the pinch-off voltage

of the device. If we assume, however, that the drain current

remains constant for V > V , the general behavior of the pentode-
dg p2

like external drain characteristics observed in experiments is

well described. Since the gradual-channel approximation gives

zero channel width for Vdg = Vp, the assumption of the constant

drain current implying zero differential drain conductance is

arbitrary. Moreover, the internal physical mechanism of the

current conduction giving this drain current can not be explained.

The gradual-channel approximation has received wide acceptance due

to its simplicity and its capability of giving a reasonable descrip-

tion of the external characteristics although it fails to give the

detailed picture of the internal behavior of the device.

Esaki and Chang have shown that devices with small length-to-

width ratios are favorable for high-speed operations by comparing

various structures of JFETs in terms of the transit time and the

transconductance at some limiting bias conditions. From a similar

study, Buchanan et al. were also led to the same conclusion and

their experimental device showed nonsaturated drain characteristics.
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The failure of the gradual-channel approximation for the bias

condition Vd > V originates from the strong two-dimensional
dg p

field distribution near the drain. Several attempts have been

made to describe this field distribution. From the assumption

that the conducting channel is completely pinched-off for Vdg > Vp

Shockley and Prim
1
' 5 solved for the two-dimensional electric field

near the drain and the solution was matched to that of the gradual-

channel approximation near the source. A similar approach has been

6
used by Wu and Sah with a more refined matching process. The non-

zero differential drain conductance predicted by these analyses is

,~~ 26
in general agreement with the experiments2 ' but the starting

assumption of complete pinch-off of the conducting channel is in-

compatible with the large drain current.

The saturation of the drift velocity with high electric

fields
7 8

has been recognized as an important factor for the

operation of a JFET by many authors. Dacey and Ross have modi-

fied the gradual-channel approximation by assuming that the elec-

tric field is in the tepid range. An approximation which gives

the mobility for the whole range of the electric field has been

used by Trofimenkoff1
0 and Tarney

1 1
to obtain an analytic solution.

12 -

Grosvalet et al. have used an analog computer to find the poten-

tial distribution along the center line of the channel and have

suggested that the saturation of the drift velocity is the main

cause of the saturation of the drain current for their device.

Zuleeg
1 3

measured the saturation current for short devices at
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various temperatures and found the same temperature dependence as

the limiting drift velocity.

14
Hauser 4 has analyzed both long and short devices using a

revised form of the gradual-channel approximation for the circular

gate junction and taking into account the field dependent mobility.

By qualitative arguments, he predicted a minimum channel width of

the order of the Debye length and the decrease of the free carrier

concentration inside the conducting channel below the thermal

equilibrium value with, the increasing drain voltage.

Grebene and Ghandhi
1 5

have proposed a device model with two

regions. In region-I the gradual-channel approximation is valid

and in region-II the current is confined to flow through a narrow

channel whose width is much smaller than the device width. The

two regions are separated by assuming that the electric field in

region-II is always greater than the critical field, i.e., the

drift velocity is saturated in region-II. According to this tTwo-

Region Model', the carrier concentration inside the channel in

region-II is larger than that in the thermal equilibrium condition.

16
Teszner and Gicquel6 have fabricated devices with small

length-to-width ratios by lateral diffusion techniques. Due to the

fabrication process, the doping profiles of these devices are non-

uniform along the channel. These devices have shomwn both pentode-

like and triode-like characteristics. From the similarity with

the space-charge-limited current, where the current is proportional
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to the square of the applied voltage, they suggested that the

change in the drain characteristics is due to the joining of the

two gate regions underneath the source region during the diffusion

process. The device is then equivalent to a bipolar transistor

operating beyond the punch-through point and the current is space-

17charge limited. Zuleeg 17 has developed this idea further and

fabricated a device with N+-N-P-N-N+ structure which showed both

the space-charge-limited operation and the bipolar operation.

When the analyses of conventional JFETs reported so far are

investigated closely, they have an important common feature. They

start from some assumptions about the shape of the channel and the

free carrier concentration inside the channel. The Poisson's equa-

tion and the continuity equation are then simplified and solved

for the space-charge region and the conducting channel separately.

Since the equations are nonlinear partial differential equations,

assumptions are necessary to obtain an analytic solution. As we

have seen, however, different assumptions lead to conflicting

results. - :~~~~~~~~~~~~~~~

The purpose of the present investigation can be divided into

two parts. The first part is to find the physical mechanism of

the current conduction for the devices with different length-to-

width ratios and with different doping profiles along the channel.

For this purpose, an iterative numerical method which can solve

the equations without any assumptions concerning the distribution

of free carriers is developed. The method takes into account the
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two-dimensional character of the electric field and the variation

of the mobility with electric fields. The comparison of the solu-

tions for various device models will clarify the effects of the

geometry, bias voltages, and the field dependent mobility to the

current conduction mechanism. The solution can also be used to

find the validity of the assumptions of other analyses.

The second part of the investigation is concerned with the

triode characteristics. The devices considered here have essen-

tially the same geometrical structure as the conventional JFETs.

The study is based on the space-charge-limited (SCL) current for

a one-dimensional N+-N-N+ structure. The possibility and the

criterion of obtaining the triode characteristics are investigated

in terms of the parameters characterizing the device.
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Chapter II: MATHEMATICAL FORMULATION

II-1 Device Model and Basic Equations

Fig. 2.1 shows the geometry of the model of a practical

device with the coordinates to be used later. For simplicity

only N-channel devices will be considered here. It is assumed

that the P+-N junctions at the gate are step junctions and that

the doping profile of the N+-N junctions at the source and the

drain contacts are described by complementary error functions.

The gate P+-regions are much more heavily doped than both N-

+
and N -regions.

By assuming no variation along the Z-direction, the region

of interest is a plane bounded by X = 0, X = Lo, Y = a, and

Y = -a. The two N+-regions are included in the analysis to

obtain a relatively simple boundary condition and to find out

any possible effect of these regions to the pinch-off phenomenon.

For a device with a very small length, these N+-regions are of

primary importance in that the interaction of them makes the space-

charge-limited current possible.

The specific device model shown has been chosen to avoid the

complexity of mathematics while retaining the important features

for the device characterization. -

When the electro-static potential and the quasi-Fermi levels

for electrons and holes are chosen as dependent variables,

Poissons equation and continuity equations are1 8Poisson's equation and continuity equations are
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V2T = - 2a[N(x,y) - P(x,y) - n(x,y) + p(x,y)]

V.Jn = V. n(x,y) 4n Vn = R

- - 1=

V-p = V p(xy) p VCP R

(2.1)

(2.2)

(2.3)

The symbols used in equations (2.1) - (2.3) are defined as follows:

Y = electro-static potential normalized by kT/q

In = quasi-Fermi level for electrons normalized by kT/q

cp = quasi-Fenrmi level for holes-normalized by kT/q

N - donor concentration normalized by ND

P = acceptor concentration normalized by ND

n = electron concentration normalized by ND

p = hole concentration normalized by ND

Jn = electron current density normalized by qND~no Vp/a

Jp = hole current density normalized by qND.po Vp/a

n = electron mobility normalized by ino

= hole mobility normalized by polp P

a = ratio of the pinch-off voltage to the thermal

voltage = V / (kT/q)

2
V = pinch-off voltage of the device = qNDa /(2Eo)

4no = low field electron mobility

po = low field hole mobility

ND = donor concentration of the N-region

a = half of the width of the N-region
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R = net rate of recombination

x, y = X, Y normalized by a

When equations (2.1) - (2.3) are combined with the results of

the Boltzmann statistics

n= e (2.4)

cp =ep-'IY*p =eP (2.5)

we obtain a set of equations which, when solved, describes

non-degenerate semiconductor devices.

a is related to the ratio of the extrinsic Debye length,

LDE, to a by

L EE kT / 1DE 0 ___

-a 2
q2D

The transition from the space-charge region to the neutral channel

takes place in about 3LDE. 19 If this transition is to be treatedDE' I

as abrupt, we should have at least 3 LDE/a < 0.1, which is equiva-

lent to a 2 450 or V 2 11.6 Volts. For a device with V - 2 Volts,
P. P

which is quite common these days, the transition region is about 25%

of the device width. Moreover, if the minimum width of the con-

ducting channel is in the order of LDE as predicted by Hauser1 4

the correct description of the pinch-off is possible only when the

finiteness of the transition region is taken into account.
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Since a JFET is a majority carrier device, the contribution

of the hole current to the drain current is negligible and the

hole density is always very small compared to the donor density

in the region of interest. Therefore, the net rate of recombi-

nation can be considered insignificant. From these considerations,

we may simplify equations (2.1) - (2.5) as

V2Y = - 2a[N(x,y) - e n] (2.6)

V .Jn = v. e n VcPn = 0 (2.7)

v.J = 0 (2.8)
P

Since equation (2.6) is to be applied to N-region only, we have

put P(x,y) = 0.

It is to be noted that the neglect of the net rate of

recombination is equivalent to the zero gate current or infinite

DC input impedance.
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II-2 One-Dimensional Formulation

Before going into the detailed discussion of equations (2.6)

and (2.7), a brief summary of the gradual-channel approximation

will be presented in this section. This will be followed by a

critical review of the approximation and a range of validity will

be estimated.

II-2-a Gradual-Channel Approximation

The gradual-channel approximation starts from dividing the

region of interest into the space-charge region and the conducting

channel with an abrupt transition. It is assumed that the space-

charge region is completely devoid of free carriers and the channel

is neutral. Consider a device with a uniform doping level, i.e.,

N(x,y) = 1, and a large length-to-width ratio. The electric field

in the space-charge region is mainly in the Y-direction and the

Poisson's equation is simplified as

d T ~bd_ = - 2a •y < 1 (2.9)
dy

where b is half of the conducting channel width. (See Fig. 2.3).

Due to the symmetry of the device, we may consider only the upper

half of the entire region (y 2 0). Since the gate P+-region is

much more heavily doped than the N-region, the space-charge region

lies in the N-region only and the potential along the line y = i 1

is constant. When this potential is taken as the reference, we

obtain

T(y = 1) = 0 (2.10)
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Another boundary condition for equation (2.9) comes from the

assumption that the electric field inside the channel is in

X-direction only, i.e.,

dy(Y= a)=0 ~(2.11)

The solution of equation (2.9) subject to the boundary conditions

(2.10) and (2.11) gives the potential in the space-charge region as

= - -y - 1) + 2ao y _< y < (2.12)

The potential inside the channel is obtained by putting y = b/a

in equation (2.12).

2
T e= (1 - <a YI a (2.13)

Note the implicit dependence of Tc upon x through b(x) which is

yet to be determined.

Because of the neutrality of the channel and the uniform

doping, the current inside the channel is entirely drift current.

Assuming a constant mobility, the drain current is

b/a
=~2j dy~,

ID = - 2 I Jx d ,,
O

2 b/a dYf
=S a; ddy (2.14)
0

a b d dy
a2 a)xa
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where I
D

is normalized by q4no ND V . The integration of

equation (2.14) yields

22 2 b 3 3
=s3{(_ _) - ( 2{( -) - ( - ) ]3 2f~~~~~~
3I a l a/ sa ;I !. a a 

2 2 b3 b3

x=~~( r b bkTJ b(%) }- {, (}}

I = 2a [3{(2 ) _ - 5 _ )_
D 3L L a VT ka a 

(2.15)

(2.16)

where L is the length of the device

the conducting channel width at the

tively. The drain current can also

the potential at the source and the

and (2.16).

and bs and b
D

are half of

source and the drain respec-

be expressed as a function of

drain using equations (2.13)

2a [ fcD / - 2 CD cs f3 - 2 s
I L [ . 93 - a2 D 3 - -2 cID=3-L ') 3s -i

where

2

'~cs s= U(l 
C ~a

2

~CD '::a(' - )

= a implies

pletely pinched-off.

analysis applies only

b = 0, i.e., the conducting channel is com-

Since b Ž 0, it is clear that the above

for !c a.

and

(2.17)
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Fig. 2.2 shows the drain characteristics predicted by

equation (2.17). Here, the drain current for TcD 2 a has

been assumed to be constant.

The electro-static potential as a function of x and y is

given by equations (2.12), (2.13), and (2.15) and the channel

shape, i.e., b(x) is given implicitly by equation (2.15).

These results are shown in Fig. 2.3 for 'cs = 0° TcD = C'

and L/a = 3. In the figure, the electrostatic potential is

divided by a.
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II-2-b Valid Range of the Gradual-Channel Approximation

It was assumed in deriving equation (2.14) that, inside the

channel, the potential is a function of x only and that the charge

neutrality is maintained. These two assumptions, however, are

related to each other by the Poisson's equation.

2
d Y

1 c
n = 1 + 2_ dxv (2.18)

dx

The second term of the right hand side of equation (2.18), which

will be denoted by 8n, indicates the deviation from the charge

neutrality condition of the channel. From equation (2.13),

6n V[d (b)]2 ( b) d2 (b) (2.19)
Lx a 1 a dx2

The condition of the constant drain current along x gives

4 b (1 - 2 b) d ( b)] 0 (2.20)__F a/ ~~~d 2 \-a/ a = 0

When equations (2.19) and (2.20) are combined, we obtain

1 2
; En = a f ()(2.21)

a

or when equation (2.14) is used
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2
5/ 3LIDs2
i D ·

n= a A2a / (2.22)
36L2 b3(1 -

~~~a)

In this equation, the drain current is divided by 23a which is

the maximum possible value predicted by equation (2.16).

We will adopt a criterion that the gradual-channel approxi-

mation can be considered as valid if 6n • 0.1. Thus,

3 . 6 Lb3 (1 b /
3
Li2D 2a (2.23)- \? k2a )a

A graphical method of finding the range of b for which equa-

tion (2.23) is satisfied is shown in Fig. 2.4 by an example.

The left hand side of equation (2.23) is shown as a function

of b/a for three different values of L/a and the current level

is indicated on the right edge of the figure. The example is
3LI

for a device with L/a = 3 and for 2- - 0.7. The valid range
2a

of b for this case is

0.27a < b • 0.98a

From the figure we can observe the following points:

(a) If L/a is small, the gradual-channel approximation is

not valid at all for a high current level. (See the

curve for L/a = 1.)

(b) The range of b increases with increasing L/a and with

decreasing drain current.
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(c) Even for a long device, the gradual-channel approximation

is inadequate near pinch-off (small b).

By comparing the foregoing observations with the potential

diagram in Fig. 2.3, one notes that the failure of the gradual-

channel approximation is always associated with the two-dimensional

field distribution.

It is clear by now that the operation of a JFET near and

beyond pinch-off must be analyzed two-dimensionally. The solu-

tion thus obtained is expected to show the non-zero differential

drain conductance in the saturation region and the physical

mechanism of the current conduction beyond pinch-off. Another

advantage of this approach is that both long and short devices

can be treated by the same method. Therefore, the effects of the

geometry of the device to the external drain characteristics can

be found.
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II-3 Two-Dimensional Formulation

II-3-a Poisson's Equation

Equation (2.6) is a nonlinear elliptic partial differential

equation and has a unique solution when N(xy), pn, and boundary

conditions are given. If an approximate solution Ta is known,

the equation can be expanded in terms of the difference 6t be-

tween the exact solution and the approximate solution. Let

Y =a + 6Y (2.24)

Then

V26Y - 2aea n = V2Ya - 2a [N(x,y) -e + 0(6Y) (2.25)

Neglecting the terms of second and higher order, we obtain a

linear equation for tY.

V26y- 2ae a

-

n
= -a 2 (xy) - e n (2.26)

From an argument similar to that leading to equation (2.10),

the boundary condition for Y along y = 1 and y = -1 is

*Y(x,1) = Y(x,-l) = 0 (2.27)

The thermal equilibrium condition at the source and the drain

contacts gives

I, L- 

n(0,0) = n 00) = N(0,0) = N ,0) = ND/N
D~LaND



28.

By using equation (2.4), we obtain

Y(0,0) = CP (0,0) + in() (2.28)

L ,L
y '°O= n\a o) + ln( ) (2.29)

a~~~~~~~

L
np(0,0) and n- ,0 are determined by the applied bias voltages.

pn (0,0) = a-(_ + B (2.30)Tn(0~~~~0)~ a VgV - (2.v-
P P

L v~/ 

0a) = dsl n (2.31)

where V is the built-in potential of the P+-N gate junction. In
B.

these equations, the applied bias voltages are normalized by Vp-VBp B

because this is what is measured from the terminals. A positive

V means a negative gate voltage with respect to the source andgs

a positive Vds means a positive drain voltage with respect to

the source.

It will be shown in section II-3-b that the quasi-Fermi level

for electrons can be treated as a function of x only;

(2.32)
=Pn = Pn(X)
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With Pn determined by equations (2.30) - (2.32), the one-

dimensional variation of the Poisson's equation (2.26) can be

solved along the lines X = 0 and X = L with the boundary con-
0

ditions given by equations (2.27) - (2.29). This solution is

then used as the boundary condition for the original two-

dimensional Poisson's equation.

In this way, the boundary conditions are specified along

the boundary of the region of interest rather than along the

lines dividing the space-charge region and the channel as in

the gradual-channel approximation. Therefore, the effect of

the gradual transition between the two regions for a device with

small a will be seen in the final results. Furthermore, the

final solution can be used to answer questions such as pinch-off

of the channel and neutrality of the channel because nothing has

been assumed for the electron concentration inside the device.

Another merit of the boundary conditions given above is that the

specification of the bias voltages is sufficient to determine the

operation of the device.

In Chapter III, numerical methods of solving elliptic boundary

value problems will be presented. In using these methods to solve

equations (2.6) and (2.26), the mesh size must be chosen to ensure

enough accuracy to the final solution. Since the potential varies

as exp(-Y/LDE) in the transition region between the space-charge

region and the neutral region, the mesh size should be smaller

than or at most equal to LDE.
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h < LDE (2.33)

If a constant mesh size is used for the whole region, the total

number of mesh points M is

2aL L
M 2° > 4ar _ ° (2.34)h2 ~ ah

The devices considered in Chapter IV have a = 50. L /a is 10 for
0

the long device and 4 for the short and the graded-channel device.

Therefore, M is in the order of 1000. This large number of mesh

points indicates the difficulty with the method in actual computa-

tion in that it requires a large storage space and long computing

time.
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II-3-b Continuity Equation

It has been found from experiences in numerical calculations

that an integrated form of equation (2.7) is easier to handle

than considering the equation as a differential equation. This

approach is analogous to Gummelt s treatment of quasi-Fermi levels

20
for a one-dimensional bipolar transistor2 0 and the discussion in

this section can be regarded as an extension of GummelT s method

to two-dimensional problems.

Because of the zero gate current, the total current crossing

any plane, x = constant, is the same.

1 r ~9 i
I
D

= ~ e pn ~ dy

~~-l~~~~ ~(2.35)

= constant

From one-dimensional analyses, it is well known that, for a

reverse biased P-N junction, quasi-Fermi levels can be treated as

constant throughout the whole device with negligibly small error

to the electro-static potential and the majority carrier concen-

trations. To find the degree of accuracy of this approximation

a one-dimensional step P-N junction with

ND = donor concentration of the N-region (X Ž 0)

153
= 105 atoms/cm3

NA = acceptor concentration of the P-region (X 5 0)

= 2 x 1015 atoms/cm3
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W = W = W = width of the N- and P-regions
n p

= 1.852 Microns

V = applied reverse bias voltagenp

= 2.584 Volts

has been solved numerically both with and without the assumption

of constant quasi-Fermi levels. Table 2.1 and 2.2 are the com-

puter outputs of the solutions at some sample points. From the

tables, we see that the electro-static potential is accurate

to 3 significant figures for the whole device and that the major-

ity carrier concentrations are accurate to 3 significant figures.

Since the gate junction of a JFET is always reverse biased

and we are interested only in the potential and the majority

carriers, the following approximation will be made:

qPn = cPn(X) (2.36)

Note that this approximation is consistant with the zero gate

current. Let

-1

F(x) = e An dy

(2.37)

F1
= 2 p eY dy

0
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APPROXIMATE SOLUTION

ON/VT OP/VT N/ND P/ND

-61.A006
-61.*8005
-61b 8001
-6107966
-61.7714
-61. 5917
-60.5124
-56.655 4
-48. 8951
-37e 1355
- 21. 3762
-4.3171.
10o7418
23. 8005
34.8591
43o9177
50. 9763
56.03 54
59.1247
60.5486
61.1075

50° 0000
50.0000
50. 0000
50.0000
50.0000
50.0000
50. 0000
50, 0000
50.0000
50. 0000
50.0000
50. 0000
50.0000
50. 0000
50.0000
50.0000
50. 0000
50. 0000
50.0000
50.0000
50. 0000

- 50. 0000
-50.0000
-50. 0000
-50.0000
-50.0000
-50. 0000
-50.0000
-50, 0000
-50. 0000
-50. 0000
-50.0000
-50. 0000
-50.0000
-50. 0000
-50.0000
-50 0000
- 50.0000
-50,0000
-50,0000
-50.0000
-50.0000

4.18510-54
4.18540-54
4.1874D-54
4.20180-54
4.30920-54
5.1574D-54
1.5177D-53
7.18190-52
1.68470-48
2. 1559D-3
1.5059D-36
3o85890-29
1,33800D-22
6.2776D-17
3.98560-12
3. 4244D-08
3,9818D-05
6.26q50-03
1.3769D-01
5, 71850-01
1.0000D 00

2.0000D 00
1o99990 00
I 9989[0 00
1.99200 00
1e°4240 00
1.6230D 00
50515ID-01
1.1654D-02
4.96850-06
3.88250-11
5.5582D-18
2.1691D-25
6 .25580-32
1.33330-37
2.10010-42
2 .44430-46
2. 10210-4°

1.33510-51
6.07910-53
1.46370-53
8.3702D-54

= ELECTRO-STATIC POTENTIAL
= QUASI-FFRMI LEVEL FOR ELECTRONS
= QUASI-FERMI LEVEL FOR HOLES
= ELECTRON CnNCENTRATION
= HOLE CONCENTPATION
= THERMAL VOLTAGE = 0.02584 VOLTS

TAB8LE 2. 1

X/W V/VT

-1 .0

-0.8
-0.7

~0o0

-0. 6

-0 * 5-0.4
-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

V
ON
OP
N
P

VT
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TRUtJF SOLtJT I ON

X/W V/VT QNI VT QP/VT N/ND P/ND

-61o 8006
-6 1. 8005
-61.8001
-61.7966
-61.7714
-61. 5918
-60.5129
-56.6566
-48. 8969
-37. 1378
-21.378P7
-4 31.96
10o7394
23. 79 84
340 8573
43.9163
50. 9752
56.0347
59. 1244
60. 5485
61 . 10n75

-50.0000
-49. 8017
-49.5 542
-49.2252
-48.7383
-47. 8704
-45. 8916
-41 2915
-33.0623
-20.9775
-4.9766
11. 9674
26.8908
39. 7922
4q 5843
49. 9999
50.oon0000
50. 0000
50.0000
50.0000
50.0000

-50, 0000
-50. 0000
50.0000
-50 .0000
50.0000
50. 0000
-50. 0000
-50.0000
50. 0000
49 6893

-35.5146
-18.3756

-3. 1860
10. 0228
21. 2573
30. 5277
37. 8517
43.2626
46.8443
48. 8902
50.0000

1.12500-10
9. 22730-1 1
7.20760-11
5. 20440- l1
3. 28010-11
1. 64790-11
6o70140-12
3.18490-12
1.99160-12
1.43800-1 2
1.1.2010D-12
1. 26680-12
1.45080-12
1.6985D-12
6.02880-12
3.4198D-08P
3. 97760-05
60.26530-03
1.3764D-01
5. 7180D-0 1
1.00000 00

2.00000 00
l.g999D 00
1.99890 00
1.9421D 00
1.9424f0 00
162310 00
5.51800-01
1.166D90-02?
4 .97780-06
5o309Q5-2i
1 089880- 11
1. 1794n-11
1.34400-1l1
1.56120-11
1.86060-1l
2.29880-11
2.99650-11
4.258 3D-1 1
6.96520-11
1.29710-10
2.25000-1.0

V = ELECTRO-ST&TIC POTENTIAL
ON = QUASI-FERMI LEVFL FOR ELECTRONS
QP = QUASI-FERMI LEVEL FnR HOLES
N = ELECTRON CONCENTPATTON
P= HOLE CONCENTRATION

VT = THERMAL VOLTAGE = 0.02584 VOLTS

TABLE 2.2

-1.0
-0.9
-0.8_() e 8
-0.7
-0.6
-0. 5
-0.4
-0.3
-0.2
-o o4I-0 o 3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0,9
1.0
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The second equality comes from the symmetry of the problem. The

drain current can now be written as

1 -cn(x) dcn
D = e F(x) n (2.38)

This can be readily integrated to give

-rPn(X) eno 0dx
e = e + a I D F(x) (2.39)

x

where
L

0=o
o a

By putting x = 0 in equation (2.39), the drain current is expressed as

-Pn(0) -Pn( o )1 e -e
eD a EO(2.40)

fo dx

where n(0) and pn(£o) are determined by equations (2.36), (2.30),
'Pn ~~0

and (2.31):

V ~~B) VB (.1
Pn(0) = CPn(0,0) = a Vgs 1 - + a - (2.41)

* *~P P

Cwn( o) n (a'0 ) = a Vds ( BV) + Pn(°'0 ) (2.42)

up

The major contribution to the integral in equation (2.40)

comes from the source region where Y is small. As the drain-to-

source bias voltage increases with a fixed source-to-gate voltage,

space-charge region is formed near the drain and almost all the
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potential drop occurs there. Therefore, the change in Y in the

source region per unit change of the drain voltage decreases with

increasing drain voltage which gives the decreasing differential

drain conductance. This is similar to the operation of a

bipolar transistor in common emitter configuration. When the

base-to-emitter forward bias voltage is fixed, an increase of the

collector-to-emitter voltage appears at the reverse biased col-

lector junction leaving the potential distribution at the emitter

junction unchanged. Since the collector current is controlled by

the emitter junction, the collector current becomes saturated.

The emitter and the collector junction in a bipolar transistor

can be treated separately in normal bias conditions, i.e., before

punch-through. In a unipolar transistor, however, the source and

the drain regions interact with each other and the small change

in the potential distribution in the source region with increasing

drain voltage depends not only on the fixed gate-to-source bias

voltage but also on the potential and charge distribution in the

drain region. In fact, if the operation of a JFET is considered

as the modulation of conductance between the source and the drain,

the drain region with high resistivity is the controlling part.

An important factor in determining the differential drain

conductance beyond pinch-off is the contraction of the size of

the region which contributes significantly to the integral in

equation (2.40. This is analogous to the Early effect21 inequation (2.40). This is analogous to the Early effect in
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the bipolar transistors and is called "Channel Length Modulation"

in the extended theory of the gradual-channel approximation.2 2

The effect of the variation of mobility with electric

field can be seen in equations (2.37) and (2.40). The region

near drain where the potential is high normally contributes

insignificantly to the integral in equation (2.40). But in

this region, the electric field is also high, giving smaller

value for the mobility. This smaller mobility amplifies the

effect of the region and decreases the drain current. This

effect, however, depends on the magnitude of the electric field

inside the device. If the dimension and bias voltages of the

device are such that the electric field is in the thermal region,

no effect of the field dependent mobility will be observed. This

is the reason why devices with small length-to-width ratios can

have both saturated and non-saturated drain characteristics.
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Chapter III: NUMERICAL METHODS

In the first section of this chapter, the successive over-

relaxation method of solving linear, elliptic boundary value

problems and generalized Newton's method for nonlinear problems

are presented. The presentation is restricted to two-dimensional

space and is intended to give only the outline of the methods.

For detailed discussions of these methods and for other methods

2 3-28of solving elliptic equations, the references2 2 8 should be

consulted. Numerical techniques of handling equations (2.39)

and (2.40) together with the iteration scheme for the simul-

taneous solution of equations (2.6) and (2.39) constitute the

second section.

III-1 Elliptic Boundary Value Problems

III-l-a Terminologies and Difference Equations

Let G be a bounded point set whose interior R is simply con-

nected and whose boundary S is a contour. The set of points

{(x+ph,y+qh) p = 0,±1,±2, ... ; q = O,±i1,2 ..

where (x,y) is an arbitrary point of G and h is a positive

constant is called a set of planar grid points. Two such grid

points are said to be adjacent if their distance apart is h.

The set of all lines, each of which contains at least one pair

of adjacent grid points, is called a planar lattice. Let G

designate the set of points which are either planar grid points
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in G or are points of intersection of S and the planar lattice.

If a point is an element of SnGh, then the point is called a

boundary lattice point, and the set of all boundary lattice

points is written Sh. The set of all points of Gh which are

not elements of Sh is called the set of interior lattice points

and is written R.

Let F(x,y,t,p,q) E C for all (x,y) E R and for all real

t,p, and q. If for all t

-06t

and for all p and q there exists a constant A such that

•A

then the elliptic equation

a2 u a2 U u-3u+ 82u x_ y F un, -x' (3.1)2y 2

is said to be mildly nonlinear on R. A linear elliptic equation

will be considered as a special form of a mildly nonlinear equa-

tion. Let ¢(x,y) E C(S). Then a mildly nonlinear Dirichlet

problem is that of finding u(x,y) which satisfies the three

conditions:

(a) u is a solution of equation (3.1) on R

(b) u 0 on S

(c) u E LC2(R) n C(G)]
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The fact that a mildly nonlinear Dirichlet problem has a unique

solution has been established.2 9

The problems of solving equations (2.6) and (2.26) subject

to the given boundary conditions are mildly nonlinear Dirichlet

problems. Since these equations do not have any first order term,

the discussion from now on will be restricted to equations of the

form

2 2
b u bu
b- + - = F(x,y,u) (3.2)
ax by

The fundamental approach of the finite difference method is

to replace the differential equation by a difference equation and

the point set G by Gh . For this purpose, let points (x,y),

(x+h,y), (x,y+h), (x-h,y), and (x,y-h) be denoted by double sub-

scripts (ij), (i+l,j), (ij+l), (i-l,j), and (i,j-l) respectively.

Let u(x,y) and F(x,y,u) at a point (i,j) be denoted by ui j and

Fi j. We try to determine parameters a,, A = 0, 1, 2, 3, 4 such

that at (x,y)

2u +u2u
2 + = aOui'j + alui+l,j + a2uij+l +

aBXui~j by+ a4Ui-(3.3)

a3ui-l,j + a4ui,j-1



Using the Taylor expansions about (x,y)

a u +a u +au Ua~. +aU+a U
0 i,j 1 i+l~ j + a2ui,j+l + a3i-lj .a4uij-

4

(at) u. . ha + h(aa-=ij a-a) 1 3 + h( a2-a4) by
%=o

h2 h2

+ - (a +a3 ) a
2
u+ __~x- + T7(a2+a4) 2u + O(h3 )

7 4 l 0 ( h 3

Comparing equations (3.3) and (3.4), we obtain

4
a0 = -

h2
(3.5)

1al=a = a2 = a3 = a4 =

hThe substitution of equation (3) back into equation (34) gives
The substitution of equation (3.5) back into equation (3.4) gives

a2u -1
+ a = - 1 ,. + U.. + u

ay2 h2 i+l,j + 1,j+ 1,J
+ Ui j_1 - 4 ui 

j
+ O(h)

Elimination of the term 0(h) in equation (3.6) gives a difference

equation approximation of equation (3.2)

U. ±U +U + U 4U. + h2F. =0 (3.7)
i+lj i,j+l i-l,j ij-1 = °,j

where Ui
j

is an approximation of ui
j
. This particular difference

scheme is known as five-point difference analogue.

For other difference schemes, see reference 28.

41.

(3.4)

a2u

ax
(3.6)

I
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A numerical method of solving equation (3.2) will now be

presented.

Step 1. For fixed h Ž 0 and fixed (x,y) in R,

construct Gh, Rh, and Sh.

Step 2. Suppose Rh consists of m points and Sh of n

points. Number the points of Rh with the

integers 1 through m in such a way that the

numbers are increasing from left to right on

any horizontal line of the lattice and in-

creasing from bottom to top on any vertical

line. Number the points of S with theh

integers m+l, m+2, ... , m+n.

Step 3. At each point (x,y) of Sh' set U(x,y) = O(x,y).

If the point (x,y) is numbered K, this is equiv-

alent to UK = O(x,y).

Step 4. At each point (x,y) of Rh, write the difference

analogue of equation (3.2). This gives a system

of m equations in m unknowns.

Step 5. Solve the system of equations generated in

Step 4.

The problem has now been reduced to that of solving a system of

equations. It can be shown that the system of equations generated

from an equation of the form of (3.2) has a unique solution and

that the solution approaches that of the differential equation

as h approaches zero26as h approaches zero.
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III-l-b Linear Equations

When equation (3.2) is linear, it can be written as

2 2
bQu Z~u

_ + - f(x,y) u = g(x,y) (3.8)
y2ax by

where f(x,y) Ž 0 for all points in R. Using the same subscripts

as those in equation (3.7), the five-point difference analogue

of equation (3.8) is

Ui+l. j + Ui,j+l + Ui-l,j + Uij-l - (4+h2fi i j = h gi 2 j (39)(4+h f. ) U. h g. (3.9)

For a fixed w, 1 < w < 2, the successive overrelaxation method

23is defined by the following iteration scheme.

(t+l) (t)
U.. -= U..

1, J1,J

(3.10)

U (t)+ U (t) u(t +l) u(tl) - (4+h2fi j) Ut) h2g
+ ~ i+l,j i,j-+l + i-lj Ij-l i i,j-1

2
4 + h f..

where the superscripts are iteration indices. The order of appli-

cation of equation (3.10) to each point of Rh is the same as the

ordering of points in Step 2.

The appearance of superscript (t+l) on the right hand side

of equation (3.10), when combined with the ordering of the com-

putation, implies that the improved values are used as soon as

they are computed. It is clear that the ordering of computation
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is an important factor determining the convergence of the method.

More rapid convergence can be realized with consistent order-

ings.2 3 '2 4 '2 7 For a five-point difference equation, an example

of the consistent ordering is that defined in Step 2. In the

discussions to follow, we will always assume a consistent ordering.

To study the convergence property of the method, we write the

system of linear equations generated in Step 4 as a matrix equation.

AU = k (3.11)

where U is the column vector with U1, U2,... , U as its elements.

Note that the boundary conditions are included in the column

vector k. From equation (3.9), we observe that the matrix A is

symmetric if every point of G
h

is an element of the set

[(x+ph,y+qh) I p = 0,1,±2, ... ; q = 0,±1,2, ... ; (x,y) E R

Suppose we paint the points of Gh with two different colors such

that the points of every pair of adjacent grid points have different

colors.2 5 Then it is easy to see that, by reordering the points

of Rh, A can be changed into

A = L:A

A2,1 A2,2

where A
1

and A2 2 are diagonal matrices.1,1 2,2
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23
Such a matrix is said to have "Property(A)".23 In the following

discussions, it will be assumed that the matrix A is real,

symmetric, positive definite and has Property(A).

Let us subdivide A into three matrices

A = B - P - T

a
l

,1

B =

0

0

-a2 ,1

P = -a3,1

Iam
_ a I
m, 1

a2 ,2

0

amm

0

0

-a 3 2

I

-a
m,2

0

0

The method of simultaneous displacements is defined by

u(t+l) = B-B(P + pT)u(t) + k

(3.12)

(3.13)

Let

u(t) = U + e(t)

MB
= B-(p + pT)

e(t) is the error vector after the t iteration. The successivee is the error vector after the t iteration. The successive

where



46.

error vectors are related by

e(t+ l) = MBe(t) M t() (3.14)e M e M e ~~~~~~(3.14)

It can be seen from equation (3.14) that U(t) converges to U

independent of U(°) if the spectral norm (the maximum of the

moduli of eigenvalues) of MB, X is less than unity, i.e.,

X< 1 (3.15)

Moreover, the convergence is faster if X is smaller. For the

difference equations derived from anelliptic partial differential

equation of the form (3.2), equation (3.15) holds independent

of h.2 6 '2 7

The successive overrelaxation method defined in equation (3.10),

when written as a matrix equation, is

u(t+ l) = u(t) + w [B-l(PU(t+l) + pTu(t) k) u(t)] (3.16)U U U ~~~~~~~+ k) - (3.16)

The error after t iterations is

(t) L (t) =t (o) (3.17)
_ w

where ?

L= (I - wB 1p) {(l-w) I + wB-lPT) (3.18)

It can be shown that successive overrelaxation method converges

to U independent of U(°) if the method of simultaneous displacements



47.

23converges. Let the eigenvalues and eigenvectors of L be
W

denoted by m2 and Yi, i.e.,

L Yi = Ii Yi i = 1,2, ... , m (3.19)

Let ~ be the eigenvalue with the largest modulus. Expanding e(o)

in terms of the eigenvectors yi and substituting it into equa-

tion (3.17), we obtain

m
e(t) = Lwt Z ai Yi

i=l

m

= Z ai rtYi (3.20)
~i=l--

m t

= 11 Eai /ni)Y
i=l

As t increases the eigenvectors with eigenvalues smaller than

?1 damp out with respect to y1

e(
t
) >nl

t
a 1Z1 (3.21)

If W ~ 0, a nonzero eigenvalue of Lm, 0, is related to an eigen-

value of MB, X, by2 3 '2 4'2 7

B -

(n + 2 - 1) 2 = 2 (3.22)
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The optimum relaxation factor Wb, for which the spectral norm

of L is the smallest, is found from equation (3.22).

]2wb -2] (3.23)

b27

To find wb numerically,2 7 we choose w which is less than

an anticipated wb. (For example w = 1.) Iterate with succes-

sive overrelaxation with w = w . The convergence rate is
0

measured in terms of

6 (t) LIU(t) - U(t)
l) i]I]2

t1 u(t-l) _(t-2)1 ] 2-

(3.24)

tI~~e~tt)1- 2
Fle e(t) 11]

File(t-l) e(t-2)l 2

where | | indicates the Euclidean length of a vector. Using

equation (3.21), we obtain

~- .. . __ o 2 (3.25)

The spectral norm of M
B

can now be evaluated from equation (3.22).

(n, + W° -1)

o1/21/2 (3.26)

0O , W0 , 0

Wb is then computed by equation (3.23).



49.

III-I-c Nonlinear Equations

If equation (3.2)is nonlinear, the system of equations

generated in Step 4 is also nonlinear.

fi(UlU2 U

m

) = 0 i = 1,2, ... , m (3.27)

.f.
Let f. = 1 0. Then for a fixed, real constant w, the

ii ~U.

generalized Newton's method is defined by the following

iteration scheme.2 6

f U(t) U(t) U(t)
(t) f

1
(
1

U 
2

, .. , 11h (U(t+l) (t) .... (t)

(t~l) 1 f2 (U1t) U2),......., Umt)

U2t 1) U t) -) , U2 , . , Ur ) (3.28)
f2 2 =(U1 - 2 Uw

(toy) (t) _ f t+()(t+l) U(t+l), *- ml) (t))
U(t+l) - - fml ,UU

2
, * UM

1
U m

_ U t)f, U (t-U2 - (t+) f (t+l) , (ti) (.)
fmM(U l ) U2t) U(-1 ) Um ))

where U(o) is.the initial approximation. Note that this iter-

ation scheme reduces to successive overrelaxation method for a

linear case. The generalized Newton's method has been used

successfully to solve equation (2.6) with w determined by the

same process as in the linear case and with arbitrary initial

approximation. This solution may be used as the starting approxi-

mation, Ta of equation (2.26).

s~eproessas ntelna aeadwt rirrnta
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III-2 Integration Technique and Simultaneous Solution

Due to the large magnitudes of the bias voltages of a JFET,

the electro-static potential varies over such a wide range that

the integrands in equations (2.37), (2.39), and (2.40) become

larger than the largest number which can be handled in most

digital computers.3 0 This difficulty can be removed by dividing

the interval of integration into smaller subintervals and choosing

appropriate reference levels for the subintervals.

Let

' 1

~(x) = - in e(x,y)-T(x,0) n dy (3.29)

1

F(x) defined in equation (2.37) and %(x) are related by

F(x) = e (,)-(3.30)

Since Y(x,y) - Y(x,0) • 0 for -1 • y < 1, the integral in

equation (3.29) can be handled by a computer.

Let the interval 0 < x < A, be divided into M subintervals
0

Ti, i = 1, 2, 3, ... , M.

T
1

{ . . -T1 -.-t~xI 0 x < X

(3.31)

T. = x X < x <- xij i = 2,3, ... * M

where

0 < Xl < x2 < ... < XM = O
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Let also QNi be the reference level for en in the interval Ti.

When T
i

and QNi are chosen appropriately, the integral

jx fi exp - Y(tO) + QNi + g(t)] dt i = 1,2, ... , M
i-l

can be evaluated without any difficulty. Let

PI

W(x) = exp - T(t,G) + QNi + %(t) dt x E Ti
x

In terms of W(x), cpn(x) and are -

(3.32)

-~n ( o)+QNi
Tn(x) = QNi - in le .o i

-CP (O)+CQN
i

Cn( 
1 e n - e (

I
D
= --
~D a~ W(o)

+ a ID W(x)] x e T i

to)+QNd0 

(3.34)

If the integrand of equation (3.29) is written as

exp [(x,y) - Y(x,o) + ln in

it is of the same functional form as the integrand of equation

(3.32). Therefore only one subroutine is necessary for the in-

tegrations. The integration by Gaussian quadrature with the

argument of the exponential function approximated by a quadratic

function has been used.

(3.33)
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The dependence of the drift velocity on the electric field,

7E, is usually described by

v - E E < Ecl (Thermal)
c2

Ecl - 2v < E / E 1 E•E 2 (Tepid)

v = Vs Ec2 E (Hot)

where vs is the saturation velocity and Ecl and Ec2 are two

critical fields. Their values for n-type silicon are

Ecl = 2.5 Kv/cm and Ec2 = 15 Kv/cm. A somewhat simpler descrip-

31
tion has been proposed by Denda and Nicolet3 1 which contains only

one critical field and gives the drift velocity for the whole

range of electric field by a single function.

-E/Ec
v = vs(1 - e ) (3.35)

For a small electric field, equation (3.35) can be approximated

by

svv E (3.36)
c

which gives

V
5

~no E- (3.37)
c

When the experimental results3 2'3 3 for vs and -no

Vs = 1.05 x 10 cm/sec

no 
=
1350 cm2/Vlt-seno=1350 cm 2/Volt-sec
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are used in equation (3.37), E has the value between Ecl andc cl

c2·

E = 7.77 Kv/cm
C

The normalized electron mobility, in, is obtained from equa-

tion (3.35) by dividing it with the electric field.

-E/E 
1 - e(3.38)

C

A revised form of equation (3.38) suitable for the machine

calculation

1 E -/E <10 4
n 2 E E/Ec 

c

(3.39)

-E/E
1- e 4

-~ T E/EEloE/Ž~10-
c

will be used in actual computation.

We now describe the iterative method to solve equations (2.6)

and (2.39) simultaneously. The variations of the two equations,

which are to be used in the computation, are collected here for

convenient references. 

V2 = - 2 [N(x,y) - e n] (3.40)

V26 - 2 e a n 2 2a[N(x) - Fp eV26y- 2o e a 8Y = -V2Y
a

- 2r (xy)- e a (3.41)
~~~'a n]



E=. Y + 8Y
a

cpn(x) = QN
i - in en( o) +QNi + i W(x) x C Ti (3.43)

-CPn(O)+QN. -en ( o)+QN
· le ~ e

D a W(O)

A= p-doN+IW(o)

W(x) = J exp - Y(t,o) + QNi + g(t) dt

x

x CT.
1

g(x) = - in exp Y(x,y) - Y(xio) + in n] dy
-1

(3.44)

(3.45)

(3.46)

The first step is to obtain the boundary conditions by solving

equation (3.40) one-dimensionally along X = 0 and X = L as dis-
0

cussed in section III-3-a using the generalized Newton's method.

The iteration of this method is terminated when

Max IY( t) - Y(t-l) I < EPSB
(x,y) ( R

n

where EPSB is a small constant to be determined from the nature

of the problem.

The overall iteration scheme starts from a guess of the

quasi-Fermni level for electrons, p()(x). This is used to

54.

(3.42)
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determine the sizes of the subintervals and the reference levels.

Equation (3.40) is then solved for Y with Pn = Pn(°) by the

generalized Newtonts method. Let the solution be denoted by y(1).

An improved solution for Pn' Pn( ) and the drain current ID()

are computed using equations (3.43) - (3.46) with Y = T. By

solving equation (3.41) for 6Y by successive overrelaxation method

with ~n = n(1 ) and a = (1)the improved electro-static poten-

tial T(2) is obtained from equation (3.42). pn(
2 ) and ID(2) are

then computed from y( 2) The above iteration scheme can be

summarized as follows.

(o) (3.40) (3.43) - (3.46) > Pn' 
I
D

(3.41) , (3.42)

Note that there are two kinds of iterations in this process,

i.e., one for solving equation (3.40) or (3.41) and the other

for the overall solution. The former may be called as 'inner

iteration' while the latter as touter iteration'. Let t and k

denote the iteration indices for the inner and outer iterations

respectively. Let
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EE(t) = Max 6Y(t) - Y(t-l) 
(x,y) E RIn

n

DMAX(t) = Max | (t) I
(x,y) E Rn

n

RMAX(k) = ~Max - V2y(k)
Max I|

(x,y) E R
n

- 2c [N(x,y) - e

2a N(x,y)

(k) _P (k)]

I

The following conditions are used to terminate the various

iterations.

Max y(t) y(t-l) < EPSI

(x,y) E Rn

EER(t) / DMAX(t) < EPSD

RMAX( k
) < EPS for outer :

for (3.40)

for (3.41)

iteration

where EPSI, EPSD, and EPS are some specified small constants.

Because Y is normalized by kT/q, IT is in the order of
V

= kT . 'The devices considered in Chapter IV have a = 50.

From these considerations, EPSB and EPSI aro chosen as

EPSB = 10 

EPSI = 5 x 10

Since the boundary conditions require more accuracy, a smaller

1
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number has been given for EPSB. EPSD is a measure of the relative

accuracy and

-2
EPSD = O10

is used. The accuracy of the final solution is determined by EPS

and the choice of EPSD is somewhat arbitrary. The value of EPS

may be chosen by observing the convergence of the drain current.

Fig. 3.1 shows the convergence of ID(k) and the reduction of

WMAX(k) for the short device considered in Chapter IV with Vgs 0
gs

and Vds= 1. CPn() for this example is

(O)(x) = (o) + [cpn(o) - pn(o) 
0

From the figure, we see that

EPS = 10-3

may be used for this example. From similar considerations, the

above value of EPS has been found to be useful for the devices

in Chapter IV and V.



Figure 3.1
IFigure 3. 1

'11 21 "1
- II &l k JI

Convergence of the Drain Current and

Reduction of RMAX with Outer Iteration

58.
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Chapter IV: DEVICES WITH UNIFORM AND NON-UNIFORM1

DOPING PROFILE IN THE CHANNEL

The method developed has been applied to two silicon devices

with uniform doping profile in the channel and the same C but

different L/a ratios. The parameters of these two devices are

N
D
= donor concentration of the N-region

= 10 atoms/cm3

N
D
= donor concentration at the source and the

15 3
drain contacts = 5 x 1015 atoms/cm

NA = acceptor concentration of the P-region

117 3= 1017 atoms/cm

= 50

L/a = 2, 8

The device with L/a = 2 will be referred to as 'short device'

while the one with L/a = 8 as 'long devicet. Another device

with the same parameters as the short device but with non-uniform

doping profile along the channel is also considered. This device

will be called the 'graded-channel device'. V and a for these
p

devices are computed by

V = kT = 1.2 9 3 Volts
P q 

a = X = 1.310 MicronsD

59.
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The small value of a and the low doping level in N+-regions

have been chosen mainly for the simplicity of the numerical com-

putation and reasonable computing time. More realistic values

may be chosen at the cost of these factors. For the short and

the long device, a constant mesh size equal to half of the in-

trinsic Debye length in the N-region is used for all bias con-

ditions. This mesh size is 1.11 times the extrinsic Debye length

in the N+-regions. The mesh size for the graded-channel device

has been chosen to be one third of the extrinsic Debye length in

the N-region. Since the size of the N +-region at the source con-

tact is larger for the graded-channel device (see Fig. 4.16), a

smaller mesh size than the short and the long device is necessary.

The mesh size chosen is equal to 0.745 times the extrinsic Debye

length in the N+-regions.

The computation has been carried out on the IBM System

360/91. The program has been written in FORTRAN IV and compiled

by the FORTRAN G compiler. When the mesh sizes are chosen as

discussed above, the total memory requirements are approximately

250K bytes for the long and the graded-channel device and 150K

bytes for the short device. The computing time depends on the

* ~~~~~~~~~~~/
Larger a requires more storage space and computing time.

Higher doping level in N+-regions requires the use of

different mesh sizes in N- and N+-regions.
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rate of convergence of the iteration schemes and the first

approximation of the quasi-Fermi level for electrons. It has

been observed that the convergence is faster for a smaller drain

current. For the example shown in Fig. 3.1, the CPU time is

about 3 minutes.

The accuracy of the results has been tested by solving

the short device with Vg
s
= 0 and Vds = 3 with the mesh sizegs ds

equal to that of the graded-channel device, i.e., with the

mesh size reduced by 2/3. The difference between the two

results is less than 1%. The choice of the mesh size, there-

fore, is considered to be appropriate.
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IV-1 Devices with Uniform Doping Profiles

Fig. 4.1 shows the distribution of the donor concentration

for the short device with the precise definition of L to be used

for the L/a ratios. As can be seen in the figure, the source

and the drain N+-regions are excluded in the definition of L so

that L is the length of the N-region. Except for larger L, the

donor distribution is the same for the long device.

In Figs. 4.2 through 4.25, the signs and the normalization

constant of the bias voltages are the same as in equations (2.30)

and (2.31). The electro-static potential, and the electron den-

sity are normalized by Vp and N
D

respectively.

Figs. 4.2 and 4.3 are the drain characteristics for the

short and the long device respectively. In these figures, the

drain current is normalized by Shcokley's saturation current.

The results of the gradual-channel approximation are shown by

the dashed curves for comparison. The source and the drain

resistance have been included in the gradual-channel approxima-

tion by matching the slope of the two curves at the origin. The

computed results are significantly different from the result of

the gradual-channel approximation in the saturation region. The

reason for this difference can be seen most clearly in Figs. 4.8-a

and 4.14-a which show the electron concentrations on the X-axis

for the short and the long device respectively for the bias con-

ditions Vgs = 0, and Vds = 3. The minima of electron concentration

in these figures are n = 0.632 for the short device and n = 0.168
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for the long device. Since the bias condition is well beyond

the pinch-off point, the minimum of the electron concentration

on the X-axis predicted by the gradual-channel approximation is

negligibly small. This significant departure from the gradual-

channel approximation regarding the electron concentration

appears in the drain characteristics as non-zero differential

drain conductance. It can also be seen that the gradual-channel

approximation is a better approximation for the long device than

for the short device regarding not only the drain characteristics

but also the distribution of the electron concentration.

The maximum of electric fields in X-direction for the bias

conditions considered before are 12.3 Kv/cm for the short device

and 11.2 Kv/cm for the long device. Therefore, the drift velocity

of the electrons is not saturated completely for both devices but

is in the tepid region. Consequently, the saturation of the drift

velocity is not the dominant factor in determining the drain

characteristics of these devices. As compared to the long device,

the larger differential conductance for the short device is due

to the smaller L/a ratio.

Comparing Fig. 4.7 with Figs. 4.5 and 4.9 we see that the

potential distribution is almost unchanged in the source region

as the drain bias voltage is increased. It is more apparent for

the long device as can be seen in Figs. 4.13 and 4.15. This is

a well known fact and is the cause of the saturation of the drain

current. (See equation (2.40).)
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The effect of the bias voltages to the distribution of the

electron concentration can be seen in Figs. 4.4, 4.6, 4.8, and

4.10 for the short device and in Figs. 4o12 and 4.14 for the

long device. The first point to be noted is that the transition

from the space-charge region to the conductive channel is not

abrupt. In order to facilitate the discussion, we define the

'channel' as the portion of the region surrounded by the source,

drain, and gate where the free carrier concentration is greater

than half of the impurity concentration of that region. There-

fore, the maximum possible channel length is L and the maximum

possible channel width is 2a. (See Fig. 4.1.) Table 4.1 gives

the minimum channel width and channel length for both the short

and the long device at various bias conditions. In this table,

the channel length modulation can be seen clearly. It can also

be seen that, for the short device, the channel is not pinched-

off, i.e., the channel length is L, for Vg = 0 and Vds < 3. Thegs d
zero channel width in this table only means that the electron con-

centration becomes less than 0.5ND along the X-axis and does not

mean the total depletion of the electrons. From Figs. 4.8, 4.10,

4.12, and 4.14, we see that there is always a conduction path

with appreciable electron concentration connecting the source

and the drain contacts. In Figs. 4.8, 4.10, and 4.14, the

electron concentration in the drain N +-region is significantly

smaller than that of the thermal equilibrium condition. This

indicates the space-charge region in the drain N+-region.



Table 4.1-a

Table 4.1-b

Minimum channel width/channel
length for the short device

Minimum channel width/channel
length for the long device

65.
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This space-charge region isparticularlyimportant for the model

chosen here because of the large potential drop in the region.

If there were no space charge in the drain N+-region, complete

depletion of electrons near drain would be necessary to support

the large drain potential. This result is the consequence of

including the N+ -regions in the analysis.

The effect of the gate bias voltage can be seen by comparing

Figs. 4.8 and 4.9 with Figs. 4.10 and 4.11. The channel width

and the electron concentration decrease uniformly from the source

to the drain with increasing gate bias voltage. In fact, the

operation of a JFET with a non-zero gate voltage can be inter-

preted as the operation of another JET with correspondingly

smaller a and zero gate voltage.

The major advantage of the present method is that it gives

the potential distribution and the free carrier distribution

directly from the geometry of the device and the bias conditions

without any intermediate assumptions.. The method, therefore,

can be used to explain the conflicting descriptions of the channel

6
shape after pinch-off. According to Wu and Sah , the channel is

essentially neutral and completely pinched-off when the drain

voltage is greater than the pinch-off voltage. The finite dif-

ferential drain conductance is attributed to the channel length

modulation. Hauser1 4
, on the other hand, assumed a minimum

channel width of the order of 2LDE at pinch-off. Further increase

in drain voltage decreases the free carrier concentration in the
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channel. The results of the present analysis are in general

agreement with Hauser's qualitative description. The results

also show that the neutrality and the complete pinch-off of

the channel are not strictly accurate. They can, however, be

regarded as first order approximations and the channel length

modulation can be seen with a proper definition of the channel.

It has been found that the saturation of the drift velocity

has not occurred for the particular model chosen and for the bias

conditions considered. By noting the poor saturation of the

drain current of the short device, we can conclude that a good

saturation of the drain current of a short device is due to the

drift velocity saturation.

The computed drain characteristics shown in Figs. 4.2 and

4.3 are now compared with the experimental measurements in terms

of the differential drain resistances. The test units are 2N3459

from Siliconix Incorporated. The values of the parameters for

these devices are

V = 2.7 Volts
P

V = 0.7 Volts

L 5.1 Microns

a 0.8 Microns

From these data, we find

L/a 6.4

VB/V = 0.26
P
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On the other hand, the device models used for the theoretical

computation have

L/a = 2 and 8

VB/V = 0.536BVp

The: difference in VB/V ratios between the device model and the
B/p

test unit can be taken care of by reverse biasing the gate junc-

tion of the test unit properly. Then, the normalized differential

drain resistances of the test units are expected to have values

between those for L/a = 2 and those for L/a = 8.

The differential drain resistances of the device models

obtained from the computed drain characteristics with Vg
s
= 0gs

are shown in Fig. 4.16. The results of two experimental units

with V determined bygs

gs B

Vp ) test unit V device model

are also shown in the figure for comparison. In the figure, the

differential drain resistances and the drain-to-source voltages

are normalized by Vp/IDo and Vp respectively where

2a
IDO = 3L qno NDVpZ 

Z = width of the device in Z-direction

The values of ID for the test units have been determined by the
DO

experimental procedure used by Wu and Sah6

As can be seen in the figure, the experimental results for



69.

L/a - 6.4 lie between the two lines for L/a = 2 and L/a = 8.

Because of the fabrication process, the L/a ratios and the

doping levels vary slightly for the test units. This is con-

sidered to be the cause of the variation in drain characteris-

tics between the test units.

Although the comparison made here is crude, it clearly shows

the correct order of magnitude and the dependence of the computed

differential drain resistances on the drain-to-source voltages.

From these observations, we can conclude that the device model

and the numerical method developed are adequate to describe the

steady state DC operations of various JFETs in detail.

I
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IV-2 Graded-Channel Device

The devices with very small length-to-width ratios can be

constructed by lateral diffusion of the source N +-region and the

gate P+-regions into the N-type epitaxial layer which is grown

over the N+ substrate. 13'16'3 4 As a result of this process the

impurity distribution is non-uniform along the channel and the

current flows parallel to the gradient of the impurity dis-

tribution.

To study these devices, a device model with the same di-

mensions as the short device and with the distribution of the

donor concentration as shown in Fig. 4.17 is analyzed in this

section. In the figure the donor concentration is normalized

153by ND = 105 atoms/cm
5

Although the model chosen here is some-

what unrealistic due to the low doping level in the N+-regions,

the results are significantly different from those in the previous

section and indicate the possibility of a SCL-triode which will

be the subject of the next chapter.

Fig. 4.18 shows the drain characteristics of the device.

The dashed curves are the results of the gradual-channel

approximation with L/a = 0.794. This value is obtained by

defining L of the device as the length of the region where

N(x,O) c 1.05. Due to the low doping level in the N+-regions

the drain and the source resistance are large. The effect of

these resistances are seen in the gradual-channel approximations

as the shift of the saturation point to the riaht of the figure.

92.



93.

The comparison of Fig. 4.20 with 4.22 and Fig. 4.24 with

4.26 shows a considerably large change in the potential dis-

tribution in the source region with increasing drain voltage.

This appears in the drain characteristics as the large differ-

ential drain conductance. The maximum electric field in

X-direction for Vgs = 0 and Vds = 3 is 13.3 Kv/cm and thegsds

drift velocity is not saturated. The field dependent mo-

bility, therefore, is not an important factor for the oper-

ation of the device up to the bias condition Vds =3.

The most interesting result of the device is the variation

of the distribution of the electron concentration with the bias

voltages. From Table 4.2, we see that for small drain voltages,

the electron concentration in the conductive channel decreases

with increasing drain voltages while for large drain voltages

it increases with increasing drain voltage. In Figs. 4.19, 4.21,

4.23, and 4.25, we also see that the distribution of the electron

concentration is similar to that of the short device for small

drain voltages while it is significantly different for large

drain voltages. It can be concluded from these observations

that a new current conduction is in operation for large drain

voltages, i.e., the SCL current starts to build up. Because of

the low doping level of the source N+ -region and the gradual

transition from the source N+-region to the N-region, however,

the SCL current is not dominant for the device. This is also

seen in the drain characteristics. If the SCL current were



Table 4.2 Minimum electron concentration
on the X-axis for various bias
conditions

94.

'\Vgs

~Vds \0.0 0.5 1.0

0.1 0.9194 0.7011 0.2706

1.0 0.8217 0.5280 0.2096

2.0 0.9160 0.6188 0.2958

3.0 1.0160 0.7185 0.3754

I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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dominant, the drain current would be proportional to the square

of the drain voltage which gives the triode characteristics.

The drain characteristics shown in Fig. 4.18 are the result of

the competition of two different physical mechanisms; the normal

field-effect transistor operation where the free carrier concen-

tration in the conductive channel decreases with increasing drain

voltage and the SCL current where it increases with increasing

drain voltage. Previously, the large differential drain conduc-

tance was attributed to the large change of the potential dis-

tribution in the source region. This, however, is due to the

increase of the electron concentration in the channel.

The ratio of the length of the N-region to the extrinsic

Debye length, L/LDE, is about 8 for this device. If the N+-N

junction at the source is abrupt and L/LDE is decreased, the

drain and the source N+-regions will interact with each other

and the SCL current can easily be realized. A device satisfying

the above conditions will be considered in Chapter V.
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Chapter V: SPACE-CHARGE-LIMITED TRIODES

Besides the experimental works of Teszner and Gicquel1 6

and Zuleeg , there are also some theoretical works about the

insulated-gate FETs with triode characteristics. Geurst35 has

analyzed the insulated-gate FETs by choosing a symmetric device

model where the current flows on the center line of the device.

By using the theory of complex variables, the Laplacets equation

is solved rigorously in the insulator gate region with the non-

linear boundary condition given along the center line. The

solution gives a transcendental equation and the drain character-

istics are obtained by finding the roots of the equation. Neumark

*36 37
and Rittner 6 ' have noted that the transcendental equation has

two sets of roots of physical interest and that the choice of a

set of roots gives either the pentode-like or the triode-like

characteristics. These analyses ar6 purely mathematical and lack

the physical understanding of the device operation.

We have seen in section IV-2 that the interaction of the

source and the drain N+-regions gives the SCL current. This SCL

38
current is similar to that observed by Gregory and Jordan38 in

their P+-P-P+ structure. The SCL triode considered in this chap-

ter is based on the SCL current of the one-dimensional N+-N-N+

structure which is analyzed in the first section. In the second

section, the effect of a gate P-N junction is combined with the

results of the first section to obtain the triode-like character-

istics.
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V-1 One-Dimensional N+-N-N+ Structure

_~~~~~~~ +

The SCL current can be realized in either N+-P-N+ or

N+- N-N+ structure. The former is equivalent to the bipolar

transistor with floating base operating beyond punch-through.

17
This structure forms the basis of Zuleeg's SCL triode 7 and is

31 + +relatively well understood.3 1 In this section, the N+-N-N

structure is discussed including the effect of the fixed space

charge of the residual donor concentration and the field-

dependent mobility.

Fig. 5.1 shows the model of this structure. The doping

profile in the N- and the N+-regions is constant and the N+ -N

junctions are step junctions. The size of the N -regions are

large enough to have the thermal equilibrium condition at X = 0

38and X = Lo . According to Gregory and Jordan 38, the crossover
0

between the Ohmic and Child's law regions occurs when the applied

bias voltage is approximately equal to the crossover voltage, V .
A

qNDL 2

V = (5.1)
11 2EE0 O

where N
D

is the donor concentration in the N-region and L is the

length of the N-region. The equations describing the structure

are the one-dimensional forms of equations (2.6) and (2.7):
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d2'

dx
- 2 U[N(x) - e 1'_n]

Jo ¢-~OnJ =-- eJ = ° en

(5.2)

(5.3)
dp

dn dx = constant

where J is the current density and

qV

kT

Jo = - q no ND V/L
0 A~~DVI

The linear dimension, x is normalized by-L. All other symbols

have the same meaning and the same normalizing constant as in

equations (2.6) and (2.7). Integration of equation (5.3) gives

- n(X) - n( o)
e = e

+ ° "x
0x

e n-1 dx
e 4n dx

L
where Io -. Putting x = 0 in equation (5.4), we have

0 = 1,

J -opn(
o
) - Pn( o )

O0 e - e
J = Ah r - -1

e An dx4n - '.

(5.5)

The boundary conditions for equation (5.2) are obtained from the

applied bias voltage and the thermal equilibrium condition

(5.4)
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at X = 0 and X = L .
0o

+

Y(o) = pn(o) + in ND
D

+

o(o) = Pn('o) + in ND

A() n V
CPn( o) - cPn(o) = B -

(5.6)

(5.7)

(5.8)

+

where N+ is the donor concentration in the N+-regions and V is.D

the applied bias voltage.

By applying the method developed in Chapter III, equa-

tions (5.2), (5.4), and (5.5) are solved numerically with the

boundary conditions given by equations (5.6) - (5.8). The

parameters of the particular structure considered here are

ND = 1013 atoms/cm

ND 1017 atoms/cm3ND 5 X 10 atoms/cm.

L

V
A

= 8.285 Microns

= 20

= 0.517 Volts

The length of the N-region, L is 6.32 times the extrinsic Debye

length of that region. Since a small deviation from the thermal

equilibrium condition is damped out in about 3LDE, L is small

enough for the two N+-regions to interact with each other. The
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size of the N+-regions is 0.148 Microns and is about 25 times

the extrinsic Debye length of that region. Therefore, the

thermal equilibrium condition is satisfied at the contacts.

Because the problem is one-dimensional, different mesh sizes

in N- and N+ -regions can be used without much difficulty. The

mesh sizes are chosen such that the ratios of the mesh size to

the extrinsic Debye length are 0.0253 in the N-region and 0.632

in the N+-regions.

When the mobility is assumed to be a constant and when the

fixed space charge due to the donor impurities is neglected, an

39approximate analysis39 gives the SCL current as

J = 16 Jo\V) V >> V (5.9)
A

If the electron concentration in the N-region is assumed to be

equal to the donor concentration for small bias voltage, the

current in the Ohmic region is

J = Jo0 (V
V
) V << V (5.10)

Fig. 5.2 shows the computed I-V characteristic. The current

densities given by equations (5.9) and (5.10) are also shown

in the figure by two straight lines. In the figure, the current

density is normalized by 9 Jo/16. Due to the factor 9/16, the0

two straight lines intersect each other when the applied voltage

2rtt-
I* . ,.

,1..
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is greater than the crossover voltage. The larger current of

the computed result in the linear region is due to the inter-

action of the two N+-regions, which gives greater electron

concentration than the donor concentration for the zero bias

31voltage. Denda and Nicolet have shown that for the three

cases of thermal, tepid, and hot charge carriers the asymptotic

2 3/2
dependences of the I-V characteristics are power laws of V2, V3/ 2

and V, respectively. For the model considered here, the electric

field at the point where the electron concentration is minimum

is 15.77 Kv/cm when V = 15 V . Therefore, the electric field is
A

in the tepid region for most of the N-region and the rate of

increase of the current with increasing voltage is smaller than V2

The distribution of the electro-static potential in the

N-region is shown in Fig. 5.3 for various bias voltages. In this

figure and in Figs. 5.4 and 5.5 the origin of the X-axis is shifted

to the metallurgical junction of the left N+-N junction. The

slight decrease of the potential near X = 0 is due to the built-in

potential of the N+-N junction.

Fig. 5.4 shows the electron concentration in the N-region

for several bias conditions. The increase of the electron con-

centration with increasing bias voltage is clearly seen. It is

also to be noted that the electron density tends to become constant

with increasing bias voltage. This is due to the field dependent

mobility and when the drift velocity is completely saturated, the

electron density should be a constant. This is conformed by
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considering another N+-N-N+ structure which has the same crossover

voltage but has a smaller length (L = 2.62 Microns). Fig. 5.5

shows the electron density and the electric field when V = 15 V .

It is clearly seen in this figure that the electron density is

constant when the electric field is greater than about 25 Kv/cm.

The current has been found to increase more slowly for this struc-

ture than for the one considered before. This is in agreement

with the asymptotic dependence of the SCL current for hot charge

carriers.

.1-
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Figure 5.2 I-V characteristic of the N -N-N structure
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V-2 Triode Characteristics

In this section we consider a symmetric device in which

the N+-N-N+ structure discussed in the previous section is

sandwiched between two heavily doped P+ gate regions. Let

the width of the structure be 2a. This device will be called

the tSCL triodet. The geometrical structure of this device

is essentially the same as a normal JFET with pentode-like

characteristics. The important difference is the L/LDE ratio

of the N-region. For the long and the short device considered

in Chapter IV, L/LDE is 80 and 20 respectively. Therefore, the

two N+-regions do not interact with each other and the N -N

junctions are simple Ohmic junctions. On the other hand, L/LDE

for the SCL triode is only about 6 and the SCL current flow can

easily be realized.

The correct description of this device should be based on

the two-dimensional analysis similar to those for the normal

JFETs. Due to the high doping level of the N+-regions, however,

the numerical method becomes extremely complicated. Instead of

solving the pertinent equations exactly, an approximate but

simple analysis is presented in this section which can give the

general behavior of the external drain characteristics.

We have seen in Chapter IV that devices with small L/a

ratios have poor saturation of the drain current when the drift

velocity is not saturated. When the drain voltage is increased,
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the decrease of the channel width and the free carrier concentration

inside the channel have been found to be smaller for the short de-

vice than for the long device. In the graded-channel device, the

carrier accumulation has been observed in the channel with a slight

interaction of the source and the drain N+-regions.

Suppose the SCL triode has a relatively small length-to-

width ratio (L/a 1). Due to the small L/a ratio and the strong

interaction of the N+-regions, the drain current is determined

mainly by the current density of the N+-N-N+ structure with the

gate junction controlling the width of the conductive channel.

Let 2b be the width of this channel. Then, the drain current per

unit length in the Z-direction can be written as

I
D

= 2 JSCL(Vds) b(VdsVgs) (5.11)

where JSC
L

is the magnitude of the current density obtained in

previous section and b is an average of b. Vds and Vg
s
in

equation (5.11) and in the rest of this chapter are the magni-

tudes of the unnormalized drain-to-source and the gate-to-source

voltage. In evaluating b, one should note that a larger potential

is required to deplete the increased carrier concentration in the

conductive channel. This can be taken care of by introducing

!
V = n V (5.12)
p P

Here n is the normalized electron concentration in the conductive

charnel and V is the pinch-off voltage of the device. By using
p
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the results of a one-dimensional analysis with V replaced by V,
p

one obtains

b = a (1 - ) (5.13)TVt 
P

where V is the potential drop across the space-charge region.

Let

L
VpC =n(-) V (5.14)

A reasonable estimate of b can be obtained by using V for

b a(1 -| 
g

s

+ V (5.15)
pc

The triode characteristics shown in Fig. 5.6 are the result of

applying equations (5.11) and (5.15) to a device with L/a = 1.

The doping level of the gate P+-reyions is NA= 1020 atoms/cm3 .

The drain current for the bias conditions such that Vgs + VB 2 Vpc

is taken to be zero.
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Figure 5.6 Drain characteristics of the SCL triode
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V-3 Comparison of the Drain Characteristics

The important parameters characterizing a JFET are

L/a = length-to-width ratio

qND 2
Vp = pinch-off voltage = 2E-E a

qND 2
V = crossover voltage = 2 L.n. ~~~~~2EE °

0

LDE = extrinsic Debye length of the channel

EEokT0
= 2N

D

a= qVp/kT
p

= qV /kT
IL

These parameters are related as

a =

DE

m -2p

LDE

2

V
p 

Depending on the choice of these parameters and the bias

voltages both pentode-like and triode-like drain characteristics

can be obtained. The long device considered in Chapter IV has

good pentode-like characteristics. The values of the parameters
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for this device are

L/a = 8

V 1.293 Volts
p
V = 83.75 Volts

a= 50

= 3200

The applied bias voltages are less than 5 Volts. On the other

hand, the SCL triode considered in this chapter has

L/a 1

V = V =0.517 Volts -
p I

a= = 20

and the applied bias voltages are less than 10 Volts.

From the above comparison, it is clear that one can design

a field-effect device having pentode- or triode-like character-

istics by choosing the parameters appropriately. The importance

of this observation is that both characteristics can be obtained

without changing the configuration of the device.
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Chapter VI: CONCLUSION

A numerical method of analyzing JFETs has been developed

and applied to several device models to determine the physical

mechanism of the current conduction. The conventional JFETs

with N-channel have been analyzed including the source and the
N+

drain N -regions. The results show that

i) In the region near drain, the channel width and the

electron concentration decrease with increasing drain-

to-source voltage. As a result, space-charge region

is formed not only in the N-region but also in the

drain N+-region and most of the voltage drop occurs

in these space-charge regions, leaving the potential

distribution in the source region unchanged. This

gives the saturation of the drain current.

ii) Although the electron concentration decreases with the

increasing drain and gate voltage, there is always

a conduction path connecting the source and the

drain contacts.

iii) When the drift velocity is not saturated, the differen-

tial drain conductance and the minimum of the electron

concentration along the center line of the device are

greater for a shorter device for the drain voltage

beyond the pinch-off voltage.
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iv) Increasing the gate voltage decreases the channel width

uniformly from the source to the drain and the operation

of a JFET with non-zero gate voltage is equivalent to

the operation of another JFET with correspondingly

smaller a and the same L and zero gate voltage.

The application of the method to a device model with non-

uniform doping profile along the channel shows the carrier

accumulation in the conductive channel. This indicates the

possibility of the space-charge-limited current which is a dif-

ferent conduction mechanism from that of the conventional JFETs.

From the study of one-dimensional N+-N-N+ structures, the L/LDE

ratio and the crossover voltage have been recognized as important

parameters in realizing the space-charge-limited current. The

drain characteristics of a device model with a small crossover

voltage and a small L/LDE ratio are obtained by a simple analysis.

Triode-like characteristics have been found for this model as

expected.

The variation of the mobility with the impurity concentration

is of secondary importance for the purpose of the present investi-

gation and has been neglected accordingly. The effect of the

temperature to the mobility and the free carrier concentration

has also been neglected. When the power handling capability of

a JFET is under investigation, these temperature dependences may

be important due to the high current density near the drain. For
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the present investigation, a constant temperature equal to the

room temperature has been assumed throughout the whole device.

The numerical method developed can also be applied to

insulated-gate FETs with minor revisions when the boundary con-

ditions are known. When the storage space and the computing

time available are large enough, a two-dimensional analysis of

the SCL triode will become possible.
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